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EQUATION FOR THE STRUCTURE FUNCTION OF A TURBULENT
STATIONARY ISOTROPIC VELOCITY FIELD AND ITS SOLUTION
IN THE INERTIAL SCALE INTERVAL

V. A, Sosinovich UDC 532,517.4

A closed equation is obtained for the structure function of a turbulent stationary isotropic velocity
field and the equation is solved in the inertial scale interval,

1. A closed equation for the structure function of a turbulent isotropic nonstationary velocity field is
obtained in [1, 2], In this paper, we attempt to obtain the stationary form of this equation and solve it in the
inertial scale interval,

In order to obtain the stationary form of Ecj. (22) in [2] for the structure function D(r), it is necessary to
pass in this equation to the limit t > = and calculate the integral over the time variable, However, in so doing,
it is necessary to take into account the fact that the integrand on the right side of this equation depends on time
explicitly and through the function being sought. The temporal dependence of the function D(r, 7) on the right
side of the equation, generally speaking, cannot be neglected, since the integral over 7 is calculated from 7 =0
tot — «, It is clear that for 7 close to zero, the functions sought depend strongly on time, However, when
some certain conditions are satisfied, this dependence can be neglected and the integration over T can be carried
out, We will obtain these conditions,

One of the terms on the right side of Eq. (22) in [2] can be written in the form
: .

t—?

where k(i] is defined by Eq. (28) in [2]; here and in what follows, we will understand the symbol ¢ to mean the
part of the integrand which depends on T through the functions sought and does not depend on T explicitly,
Changing the variable of integration T according to the equation (t — ) -1 = z and using Eq. (28) in [2] for K},

Iy o S‘dpj‘ T Lo, n 90 (s O, (1)
0 0
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we obtain

o

3
[,m' Z

Here, only one of a series of terms, all of which can be analyzed in a completely analogous manner, is written
ouf,

 d=ble, 2 o, t— 4 @)

H‘Iw 8

We substitute in (2) the expression for ¥ in the form (29) in [2] and find

©

Iieo { dp 2 { dzexp[2A2 (n2 — 1)(@®r% — D] X (@ [2A (1 — pr2)] + © [2A (1 4 pr2)]} 2" 2 (p, ¢ — z7), 3)
0 /

m=1 1/t
=7/ \/_Z—n_D(p, r); and ®(x) is the probability integral, If we use the expansion of the function ®(x) in a
series (see Eq, 8.253(1) in [3]), then the expression for I; can be represented in the form

uo

ltoo 2 2 f dz22‘m+k) Hexp [— 22A%2 (1 — p)2] X @, (p,  —27Y) - exp [— 22A%2 (1 - p)?| @y (0, ¢ — 27} )

0 m=1 k=0 1/¢
The meaning of the functions ¢, and ¢, in (4) is the same as that of ¢ in Eqs. (1)-(3).

We assumed that there exists arelaxationtime tp such that if 7 > t,, then the function sought D(r, 7) does
not depend on the argument 7, The condition that the functions of z in (4) be stationary has the form

t>t 42t (5)
The initial, i.e,, strongly depending on the time argument, values of the functions are realized for t — z=t - 0,

1 —
If, in this case, t — *, then z — 0. However, only the values of functions for which z =2, = (m 4+ k— —2—) * Jor sy,

where ag,= An(lp) » give the main contribution to the integral over z, This follows from the fact that the
function 2 TM—1 ~2"2%+) hag a maximum for thevaluez=zpy,, But, if z=z,-£0 , then it is always possible
to choose t such that the steady state condition (5) be satisfied for z = z,,, Indeed, the right side in the equality

t>tr—f—oc(i;/(m+k——;) (6)

is always finite is a bounded flow, since

rlL
Ag) it (7)

where L is the size ofthe system; % is the mean-square value of the fluctuating velocity,

If the flow is infinite, then

TL, (8)

Oy OO —— T
@ DL

where Ly is the maximum size of vortices which have a direct effect on vortices with scale r, The existence of
Ly < = is the second assumption necessary for condition (6) to be satisfied, Thus, two assumptions are im-
portant: a) the existence of a relaxation time tp < ; and b) quasilocal nature of the interaction of fluctuations
of different scales: Ly < ®, Under these assumptions, the dependence of the right side of Eq, (23) in [2] on 7
can be neglected for t » t,. and, setting t — «, the integration over the variable 7 can be carried out,

In going over to the steady-state form for the equation for D{r), we omit all terms proportional to deriva-
tives with respect to time and assume that in this case the following relation is valid [4]:

gy = hmﬁ—_— Dy (0r) = ¢,
p~0 2 12

i,e., the magnitude of the energy dissipation becomes equal to the magnitude of the pumping,

The equation for D(r) takes the form

o0

_ ! p? , o
D) = gz | o g 2 ®)

1179



Here

N[ r\, 4 1 X — ‘
D (p, f):Eko(P,”) [r—Dpp(.O, )N, + 2er IR +’1—53”113}+W2{“V2ﬂki(9, ny =+
-

D 2 9
e V {00, | Do o (L) e, e [0, . (10)
].

In Eq. (10) M, (p, r), ”l , and Ty, 8re interpreted accordingto Eqs, (24) and (25) in [2

The following new nota-
tion is 1ntroduced

7

k= timenear { — % o n g, j=0,1,2 3 1=1,2 (11)
frm (t—1)
. 2n2A2 dt
kj = lim — kitp, n, g), j =1, 2, 3. 12
e Vn 5‘(1—1)3 1461 ). “
n

The quantities kg(p, n, q) and kj(p, n, q) are defined by Eqgs, (28) and (30) in [2]. Substituting these expressions
into (11) and (12} and replacing the variable of integration using the equationT=—Az"! +t, we obtain the follow-

ing equations for calculating k! and kj:

= (2— 1) 2 0% Z (a5 Wom—1 + bEWSA_1 -+ pciE WEA—1], (13)
ki = z‘ p** L [@fxhom + 0700 Yi—s + ChbEA—s]. (14)
Here, the following notation is used:

P - 2'8’ dzzv (p, n, 2); (15)
0

ch (222n2p) ' (16)

| T .

where the expression for ¥(p, n, z) is defined by Eq. (29) in [2]. Calculation gives the following results;

1/2
Py = MI/2 arctg t ’

L1 un
2
‘ ’/” g L <p<1 (18)
{n p2)’1f_n§—‘p<’
| Vup ) 1 '
TR i P o el
The values of the integrals ¥; for other values of ! are calculated from the recurrence equation
r ( ——l + 3‘} 141 1+1
2 I lpnz— ” + (I + P) Py I+1 [ 19)
R T L Jm;(—_* li*l)w} |
5
Here T'(x) is the gamma function;
b= (2 — (1 — p); 20
. 1
o T[T )+ iy
(5 _ 2 (21)
P 9] :
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Using these results and the expressions for the coefficients a, b, and ¢ presented in Appendix A in [2],

it is possible to obtain expressions for kj and kj:

1 |
ki = ——1a (0, 1)+ b5 (o, M) b (o, W),

d3
where
1—p? d I
0 arctg i V—md , i o< —
Vo —n?(l+pt)— | n
2
1
bip, n)= 2(1—p2)/m, v if p:.;,
b—¢ (& 1
£ arth md , i p>—;
Vmd . 7n2(1+p2)—1 n

d=p—1; m=n—1.

The matrices aje(p, n) and b;(p, n) are some polynomials in powers of p® with coefficients depending on n:

2
ag = d bgz—;di"nz; ap = d?m(— 1+ p?; b},:dzm(—l —f—%-—[—

2 2 2 »

H—pzﬁ— ; ‘ag = — d?mp?; b%zdzm(l—pz—n— ;a?:di(—Q—,’-
2 2 n?
2 2 2

+ 3n2—pn2); b =d z (4 —3n2—p?); af = . by = —e,

2 12 2
a3=d _mz_ [(— 3+2n2+3n4)+p2(3n2—5n4)]; s = —; dm? (— 1 — n?>4-

. n

. 3
-+ pn%); af = iz (2 — 15n2 + 13p2n%); b] = _Z m? (— 4 -+ 5n2 — pn?);
n .

4

— [(— 11 + 2502 - 7n* — 3n9) + p? (20m* — 58n% -+ 2n9) +
n

i

1

a2

+ p4(— 61t + 24n8)]; by = —;— dl(— 1+ 9n2— 3n -+ n%) + p2 (2n2 —

— 14n%) - p& (— 2n% + 8nf)]; as = -—1? {(— 34 9n% 4 11n* — 15n%) +
. on

+ P2 (— 312 — 201t 4 19n8) - pb (6nt — 4n8)]; b = —Z- m?(3 + 5n? — 3p2n);

at = is [(—24 4 6012 — 28n% + 101t — 3n®) 4 p? (48n% — 11204 —
n
— 518 — 36n° — 12n10) - ph (— 42n% + 1150 — 2718 — n10) |-
~+ pf (18nf — 48n® + 15n9)}; b = 2—92— [(4 4 4n2 — 4n* + n8) +
1

+ p2 (12 — 4612 +- 29n4 — 14n® 4~ 4n®) - p*(— 1842 4~ 53nt — 23n +

4 3n%) + 08 (6n% — 1618 + 5r%)]; af = ———3din [—2-L
+ p2{5n2 — 3n¥)]; bF = % g a} = - (6 — 6n® + 8n® — 6n9) -+
7

(22)

(23)

2

1181



+ p%(— 21n? + 1904 + Tnb — 9n5) + p* (1504 — 28n® + 15n%)];

by = -g‘ m2[2 + p?(3 -+ 3n2) — 3p'n?]; (24)
(1—pn® 1
‘ (1_9)3 ki (p’ I’L), if p< ;2_,
. —_m (25)
k](p’ n) 2n2d 0 , if ___1;<p<];
7
ok (0, m) i p>1;
B (o, n)y = __miz___ — 2 172 — Ik
(o, 1) (I {[— 3+ 3n2 + p?(11n% — 3n%) -+
-p* (—n2+4- L ns+2n8) -+ p8 (61L—nB- 3n8)+ p® (—3n6—6n5—3n10)] 4
~+p [—6n2+p? (2n24 2n4)+-p* (—22n%—16n5%)+p° (12r5+12n8)]};
2 . o R
B (0, 1) =5 ki oy ) = m{{I—pPra-pt (-0 [—20%e%);
B (0, m) =y (0, 1) = ——— {I(—3+300)+ 62 (— 3+ 9n i )

d(1—pp

3184 (—OnP— 124 29n942n)4-08 (—3n24- 10mA—2n%—18n5-1-3n10) -
p® (314 — 218 — 3n12)]+-p (6 — 6n%)--0* (— 6n2 — Ant+-2n8)+
gt (1212 4nd — 16n8) 490 (— 1205 +-4nS4-4n® 4 l2u;_“)]};
k3 (p, n) = —}i— [(8 — 3n2 — 2n%)+p* (— 3n2+5n‘)].

T, Let us proceed to study Eqgs. (9) and (10) in the inertial scale interval., The inertial interval is deter-
mined by the condition {4] 7 « r « L, where L is the outer scale and 7 is the Kolmogorov turbulence scale,

r
In the inertial interval, the terms oov and N(z‘)z drop out of Eqgs, (9) and (10), The first terms

are related to the direct action of viscous forces and the second are related to the direct action of large vor-
tices on vortices with scale size r, According to the definition of the inertial interval, both are small, Taking
this into account, as well as Eqs, (25) in [2], we obtain the equation for the structure function in the inertial

interval

oo

- (R m) e
D(r) Vﬁ 5‘ dp Di/2 (pf) { * (p’ n) 3 'gr + 8D1/2 (Pf) _x (27)

0

\ oryy ‘nH_M}_E, M;ier)
X 2 [— I(Pa 6D3/2(pr) 5 ] SA(Y }-

=1

Here Mj(pr), j=1, 2, 3, are defined by Eq. (24) in [2],

In solving (27), it turns out that the integral over p on the right side of this equation diverges at infinity.
This is related to the fact that the right side of this equation contains an infinite constant, In order to eliminate
it, it is enough to differentiate the left and right sides of this equation with respect to r and then to solve the
resulting differential equation, For convenience in differentiating, we rewrite Eq, (27) in the form
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oo

1 UG TS (A I PO
D(r)"VE‘de SR { r2 ko( r’n> 3" 8D'/? (y) * =9

o ] B ] | L

j=i

Differentiating the left and right sides of (28) with respect to r and introducing the definition
1

Pi=—~ D; (), (29)
we obtain o 9 y 1
P({r)= V2 S‘dy D) { 3 SGO( P n)—(— 16D'"% (4)
Ve . ([ 2 2(‘y ” ! (30)
Van g (Y n)\— —25 a2 (2 n)| Mio)l,
XX[ y (rn) w7 )Y
j==
where
A ey 4L ey o .
G ( r n) ==Y dr [ r2 ko( r’ n)] T dp le%o (e, n)]“’:‘f" (31)
8 N e d [y Nl 4 o
G ( r’ n) == dr [ re kl( r’ n)]# dp l6%; (p. n)]"’:}y" (32)

M) = 4§ axep () {|o (L) P i (Z) P+
+ 321y2 ; 26 ot (%)'j:dzzP (2) B (%, 2) (%)h} (33)

Equation (30) can be viewed as an equation for the function P(r) in the inertial scale interval, Such a function

was first examined in [5], In so doing, an argument was given in [5] supporting the fact that it is this function

that can be the object of the theory of turbulence in the universal scale interval. In the inertial scale interval,
the functions P(r) and D(r) in Eq, (30) must have the following form:

(34)
D(r) = Ce2/3r2/3. (35)

This follows from dimensional analysis, The next problem is to determine the values of the constant C in Eqs,
(34) and (35), Substituting P(r) and D(r) in the form (34) and (35) into Eq, (30), we obtain

U moora—1/3 1 ¥ 2
?CS S = Vonr Sldycl/2sl/3yl/3 {'— 3 oGy = . » 2|+
. 0

P(r)y= —;— Ce2/3r—1/3,

3 __ (36)
1 Von y 2e y ~
+ 16C”2 81/3 yl/B 2 [ y GJ‘ (T: 2) -m(ﬁ ('r-a Q)JMJ(b)}
=1 .
In writing (36), we took into account the fact that inthe inertial interval
=) 1+ 20 s @
The expression for 1\~/Ij(y) in the inertial interval has the form
M; (y) = —;‘- Cet/3yt/3];, (38)

where the constants Ij are defined by the following expression:
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32 smd ko513

7

de{xl/a [al(x lfbf(x)] x2/3 81 o (x) [(1 - xpH5/5— |1 — xfp+5/2], (39)
0

In the last equality, we used the notation
4 » ~
=3 W ()b (40)
n=1
The matrix 8, which is defined by Eq. (23) in [1], has the following form in the inertial interval:

1/9

41

= | U3 (41
Po=1 yy3 I

1

A calculation, making use of Appendix B in [2], leads to the following result:
—2 42)

Ii~| 16|

7

Substituting in (36) the expression for l\zj(y) in the form (38), dividing both sides of the equation by 1 /382/31,2/3
H

we obtain
C= ” ;n Xdppzls{ ;2,2 G%(‘p, 2)-+ Vfc 23 1;Gi (e, 2)— —2—7~0—IC,T 23 1,G} (p, 2)}, (43)
i i=1 i=l
We introduce the following notation:
L= -—fdpo?“Gf (0, 2), i.= 0,1, 2,3, (44)
0
K; = fdpp”%;(p, 2, j=1,2, 3 | {45)
¢

With this notation, equality (43) can be rewritten in the form
3
1\ 1 3 (46)
c32f ] — — LK =———— | 2L LL;
[ 12 Z ‘ ’K’} Van [ T 270 u‘ ! ’]
= :

From (46), we obtain the equation for calculating the constant C:

{ i i 3 1 y2/3
2L, —— EIL-
l 1/2:;[ ° 70 e ’ ’J l ")
Cz 1 3 .
] —— 1IjKj |
12
1 = )

In order to make use of this equation, it is necessary to know the value of the integrals (44) and (45), The func-
tions G% and G]- in the integrand can be calculated from Eqs, (31) and (32), The results are:
6 —14-4p2—12p%12p8 '

p +4p>—12p*+12p (0, 2)]’

3 2__6 4
—~———(4Pz_1)2 [(p 04 + -

Go(p, 2) =
G, 2= (4—299—? [% 139 02 - 352 pk — 15806 4 264 p° -+
T (a1 \ |

1

+ 1 —p?

(— 5 — 250p2 — 339p% — 1060° + 580p% — 528p1) ¥ (p, 2)];
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9 _
Gi(p, 2) = L [2+64ng+ 720" 4

8 (40— 1)
1

+ -

— (— 144 02 4 72p* — 1440 ¥ (p, 2)},

[ (48)
Gi(p, 2) = 50 [ 137 - T37 % 4 365 p4 — 324 08 -
T ety 4

1

+ 1—p*

(— 54— 1242 p* -+ 81+ - 162 08 + 648 p°) (0, 2)].

Here, the function ¥{p, 2) is defined by Eq. (23) with n = 2, If we use the expansion for the function ¥(p, 2) around
the point p = 1/2 in the form

p) 1. i 1
i s = (1 —0%|1 —(4p%2 — 1 (402 — 1) 407 — 1P+ ... 1,
pliﬂiw(p) 3( p)[ + 9.(9 )‘+ 45(p )'+ 189(9 Y+ ] (49)

2

then it can be shown that the functions G%(p, 2) do not have singularities at the point p = 1/2,

Using the expansion of the function ¥(p, 2) in a series for p — ®

. 1 1 1
lim , 2y =(l—p?| — — .o b , 50
tm (e, 2)= (1= 5ty o] (50)

it can be shown that for p —<« all functions G;(p, 2) have the form

A B

limGj(p, 2) = .
oo e i(es 2) ps 0°

(51)

A study of the functions G%(p, 2) for p — 1 shows that they all have at this point an integrable singularity

lim G} (p, 2) ~ In |1 —p. (52)
p—~1

The expression for the functions Gj(p, 2), j=1, 2, and 3 has the form

{ 1
v Gf, i —,

l P APy (53)
G;(p, 2):{ 0, if _}1 <p<<l,

G}, if p>1,

where

Gl = 270> [— 27 — 43602 — 1756p4 — 6211208 +
32(1 — p)o (4p* — 1?

- 3407360° — 432640p1 — 230400p%2-+p (222 — 1200% +

4 22808p* — 2128008 — 336000p® + 775680;)‘“)];

G) = 2T (—p—407)
4(4p2 — 1)
Gy = % [— 3 4 20p% — 404p% -}- 608 pf'v"l-
- 8(1 —p)(4p> — 1) '
960p° 16 — 80p2 - 976p4—23360%)}; Gg = ———— "’
-+ 9600° - p ( p? -I- 976p 0%); Gs TGP 1p
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3p?

8(1— o (402 — 1)f
—'134772p5 4- 106‘)424098 — 1575872p10 — 3287296p*2 -+ p (990—
— 3360p% + 1131920% — 321584p8 — 543072p° |- 2162304p')];
3(41p + 28p9)
4(40* —1p

Gi=

[— 135 — 835p% — 17780p% —

Gs =

It is easy to see that for p — « the expansion of the functions Gj(p, 2) has the form

. G; D;
lim G; (p, 2):;?]“{“*551 I (54)

From the properties of the functions Gz(p, 2) and G; (p, 2) mentioned above, it is evident that the integrals L]
and K can be calculated,

As a result of a numerical integration using Eqgs, (44) and (45), we have

Ly=0.31, L =-—35, L,=175, Ls——12.63, (55)
Ki=—051, Ky=—0.13, K,=0,60.

Substituting these values into (47) and using (42), we find
C =037 (56)

The value of the constant C obtained is less than the experimental value Cgxp, by a factor of 5, As shown in [4],
Cexp ~ 1.9, This disagreement (if it is not a result of errors in the calculations) can be related to the approxi-
mation used for the function ¢ in the equation for the characteristic two-point function (see expression (7) in
[1]). The following expression can be used as a corrected expression for ¢ together with the normalization
condition:

¢ = exp {L[B(0) 0%+ [By (x) — By (2)] 8,851 +- % [G(0) 2+ [G (1) — G (A 1T}, (57)

where A and # are constants which are chosen so as to give the best agreement with experiment in the inertial
and inertial-convective scale intervals, In order that C calculated from Eq. (47) be equal to 1.9, it is neces-
sary to choose A ~1,815, It is clear, however, that the correct expression for ¢ can only be obtained as a
result of some variational calculation in the spirit of [6],

In conclusion, we made several remarks of a general nature, The purpose of this work and [1] and [2] was
mainly to develop a technique for deriving equatlons for the structure function D(r, t), beginning with a closed
equation for the characteristic function ¢4 t(e, 1) of the joint probability density for differences in velocities
and concentrations of a passive admixture at two points of an isotropic turbulent flow. In going over from the
equation for ¢ to the equations for D, it is necessary to solve the closure problem, since the right side of the
equation for ¢ includes, generally speaking, moments of all orders of the differences in velocities and con-
cenfrations at two points, The closure hypothesis used in [2] that the cumulants, beginning with the fourth and
higher orders, are small is more of a working hypothesis than a recipe claiming a priori justification and
finality, The guiding principles in choosing a closure scheme were considerations of relative simplicity and
some experimental indications, The use of more complicated closure schemes, e.g., the scheme proposed in
[6], or the choice of the form of the function ¢, taking info account nonzero excess in the probability distribu-
tion, requires much more calculation than necessary for realizing the goals of the present work,

As is evident, the work carried out here has shown that the method proposed leads to equations for struc-
ture functions that differ greatly from the corresponding closed equations obtained with the use of the moment
formalism, The nature of the nonlinearity turns out to be very complicated. In addition to the strong nonlinear-
ity of the equations, which is manifested in their overall structure, there is also a weaker nonlinear dependence
of the kernels of these integrodifferential equations on slowly varying combinations 7n(y), B(y), and ¥(y), which
are determined by quantities of the type y[ln D(y)] etc.

Analysis ofthe stationary form of the equation ininertial scale interval shows thatall integralsonitsright side
conver ge only if we solve the equation for the function P(r) = 1/zD'r (r), whose physiqal meaning is that of an energy
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density distribution in the scale space r, and not for D{r), In attempting to solve Eq. (27) for D{r), it turns out
that the integral over p diverges, The situation here, apparently, is analogous to that encountered in Kreich-
nan's theory of direct interactions [7]. Sosinovich [8, 9] attempted to eliminate this difficulty by introducing
into the theory some constants whose values where chosen from the requirements that the integral over p con-
verge at infinity, However, the approach used in the present work is better justified, i.,e., the transition to

Eq, (30) for the function P(r), in which all integrals converge, This approach corresponds to Chandrasekhar's
results [5], which confirm that only P{r) can be the object of study of the theory of isotropic turbulence in a
universal scale interval,

NOTATION

D{r), two-point structure function of an isotropic turbulent velocity field; ¢, specific pumping rate of
turbulent energy; £4, specific rate of dissipation of turbulent energy; v, kinematic viscosity coefficient; L,
outer turbulent scale; C, constant in Kolmogorov's 2/3 law; P(r) = !/,D'p(r).
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